Classify outlier in excel file

This commit is contained in:
Laborratte 5 2025-06-22 17:29:35 +02:00
parent 5f9f4a6c7f
commit 0bf7c19f86
Signed by: Laborratte5
GPG key ID: 3A30072E35202C02

View file

@ -2,41 +2,39 @@ import numpy as np
import pandas
from sklearn.impute import SimpleImputer
from sklearn.pipeline import make_pipeline
from sklearn import tree
from sklearn.preprocessing import OrdinalEncoder
from sklearn.tree import export_text
from sklearn.neighbors import LocalOutlierFactor
NO_DATA: str = "NO DATA"
def read_excel(path: str, target_column: str):
def read_excel(path: str):
data = pandas.read_excel(path)
X = data.drop(target_column, axis=1)
y = data[target_column]
feature_names = data.columns.drop(target_column)
X = data
feature_names = data.columns
for feat in feature_names:
if feat == target_column:
continue
if feat.startswith("Messpunkt"):
# Convert to numerical value
X[feat] = X[feat].replace(to_replace=NO_DATA, value=np.nan)
X[feat] = X[feat].astype('float64')
else:
# Convert to categorical value
X[feat] = X[feat].astype('string')
X[feat] = X[feat].replace(to_replace=NO_DATA, value=None).astype('object')
return X, y, feature_names
return X
def classify(X, y, feature_names=None):
clf = tree.DecisionTreeClassifier()
clf = clf.fit(X, y)
r = export_text(clf, feature_names=feature_names)
print(r)
def classify(X, data_frame):
clf = LocalOutlierFactor(n_neighbors=3)
y_pred = clf.fit_predict(X)
#X_scores = clf.negative_outlier_factor_
#print(y_pred)
#print(X_scores)
return data_frame[y_pred < 0]
if __name__ == '__main__':
X, y, feature_names = read_excel("tests/Beispiel Auswertung2.xlsx", "Motornummer")
pipe = make_pipeline(OrdinalEncoder(), SimpleImputer())
data_frame = read_excel("tests/Beispiel Auswertung2.xlsx")
X = pandas.get_dummies(data_frame) # OneHotEncode categorical values
pipe = make_pipeline(SimpleImputer(add_indicator=True))
X = pipe.fit_transform(X)
print(X)
classify(X, y, feature_names)
outlier = classify(X, data_frame)
print(outlier)